3.6.20 \(\int \frac {\sqrt {c+d x^4}}{x^7 (a+b x^4)} \, dx\)

Optimal. Leaf size=110 \[ \frac {b \sqrt {b c-a d} \tan ^{-1}\left (\frac {x^2 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^4}}\right )}{2 a^{5/2}}+\frac {\sqrt {c+d x^4} (3 b c-a d)}{6 a^2 c x^2}-\frac {\sqrt {c+d x^4}}{6 a x^6} \]

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {465, 475, 583, 12, 377, 205} \begin {gather*} \frac {\sqrt {c+d x^4} (3 b c-a d)}{6 a^2 c x^2}+\frac {b \sqrt {b c-a d} \tan ^{-1}\left (\frac {x^2 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^4}}\right )}{2 a^{5/2}}-\frac {\sqrt {c+d x^4}}{6 a x^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^4]/(x^7*(a + b*x^4)),x]

[Out]

-Sqrt[c + d*x^4]/(6*a*x^6) + ((3*b*c - a*d)*Sqrt[c + d*x^4])/(6*a^2*c*x^2) + (b*Sqrt[b*c - a*d]*ArcTan[(Sqrt[b
*c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(2*a^(5/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 465

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = GCD[m + 1,
n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /;
FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 475

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {c+d x^4}}{x^7 \left (a+b x^4\right )} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {\sqrt {c+d x^2}}{x^4 \left (a+b x^2\right )} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {c+d x^4}}{6 a x^6}+\frac {\operatorname {Subst}\left (\int \frac {-3 b c+a d-2 b d x^2}{x^2 \left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx,x,x^2\right )}{6 a}\\ &=-\frac {\sqrt {c+d x^4}}{6 a x^6}+\frac {(3 b c-a d) \sqrt {c+d x^4}}{6 a^2 c x^2}-\frac {\operatorname {Subst}\left (\int -\frac {3 b c (b c-a d)}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx,x,x^2\right )}{6 a^2 c}\\ &=-\frac {\sqrt {c+d x^4}}{6 a x^6}+\frac {(3 b c-a d) \sqrt {c+d x^4}}{6 a^2 c x^2}+\frac {(b (b c-a d)) \operatorname {Subst}\left (\int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx,x,x^2\right )}{2 a^2}\\ &=-\frac {\sqrt {c+d x^4}}{6 a x^6}+\frac {(3 b c-a d) \sqrt {c+d x^4}}{6 a^2 c x^2}+\frac {(b (b c-a d)) \operatorname {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x^2}{\sqrt {c+d x^4}}\right )}{2 a^2}\\ &=-\frac {\sqrt {c+d x^4}}{6 a x^6}+\frac {(3 b c-a d) \sqrt {c+d x^4}}{6 a^2 c x^2}+\frac {b \sqrt {b c-a d} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x^2}{\sqrt {a} \sqrt {c+d x^4}}\right )}{2 a^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.33, size = 130, normalized size = 1.18 \begin {gather*} \frac {3 b c^2 x^4 \sqrt {\frac {d x^4}{c}+1} \sqrt {x^4 \left (\frac {b}{a}-\frac {d}{c}\right )} \sin ^{-1}\left (\frac {\sqrt {x^4 \left (\frac {b}{a}-\frac {d}{c}\right )}}{\sqrt {\frac {b x^4}{a}+1}}\right )+\left (c+d x^4\right ) \left (3 b c x^4-a \left (c+d x^4\right )\right )}{6 a^2 c x^6 \sqrt {c+d x^4}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c + d*x^4]/(x^7*(a + b*x^4)),x]

[Out]

((c + d*x^4)*(3*b*c*x^4 - a*(c + d*x^4)) + 3*b*c^2*x^4*Sqrt[(b/a - d/c)*x^4]*Sqrt[1 + (d*x^4)/c]*ArcSin[Sqrt[(
b/a - d/c)*x^4]/Sqrt[1 + (b*x^4)/a]])/(6*a^2*c*x^6*Sqrt[c + d*x^4])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.53, size = 151, normalized size = 1.37 \begin {gather*} \frac {b \sqrt {b c-a d} \tan ^{-1}\left (\frac {b \sqrt {d} x^4}{\sqrt {a} \sqrt {b c-a d}}+\frac {b x^2 \sqrt {c+d x^4}}{\sqrt {a} \sqrt {b c-a d}}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {b c-a d}}\right )}{2 a^{5/2}}+\frac {\sqrt {c+d x^4} \left (-a c-a d x^4+3 b c x^4\right )}{6 a^2 c x^6} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[c + d*x^4]/(x^7*(a + b*x^4)),x]

[Out]

(Sqrt[c + d*x^4]*(-(a*c) + 3*b*c*x^4 - a*d*x^4))/(6*a^2*c*x^6) + (b*Sqrt[b*c - a*d]*ArcTan[(Sqrt[a]*Sqrt[d])/S
qrt[b*c - a*d] + (b*Sqrt[d]*x^4)/(Sqrt[a]*Sqrt[b*c - a*d]) + (b*x^2*Sqrt[c + d*x^4])/(Sqrt[a]*Sqrt[b*c - a*d])
])/(2*a^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 329, normalized size = 2.99 \begin {gather*} \left [\frac {3 \, b c x^{6} \sqrt {-\frac {b c - a d}{a}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{8} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{4} + a^{2} c^{2} + 4 \, {\left ({\left (a b c - 2 \, a^{2} d\right )} x^{6} - a^{2} c x^{2}\right )} \sqrt {d x^{4} + c} \sqrt {-\frac {b c - a d}{a}}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}\right ) + 4 \, {\left ({\left (3 \, b c - a d\right )} x^{4} - a c\right )} \sqrt {d x^{4} + c}}{24 \, a^{2} c x^{6}}, \frac {3 \, b c x^{6} \sqrt {\frac {b c - a d}{a}} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{4} - a c\right )} \sqrt {d x^{4} + c} \sqrt {\frac {b c - a d}{a}}}{2 \, {\left ({\left (b c d - a d^{2}\right )} x^{6} + {\left (b c^{2} - a c d\right )} x^{2}\right )}}\right ) + 2 \, {\left ({\left (3 \, b c - a d\right )} x^{4} - a c\right )} \sqrt {d x^{4} + c}}{12 \, a^{2} c x^{6}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^4+c)^(1/2)/x^7/(b*x^4+a),x, algorithm="fricas")

[Out]

[1/24*(3*b*c*x^6*sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^8 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x
^4 + a^2*c^2 + 4*((a*b*c - 2*a^2*d)*x^6 - a^2*c*x^2)*sqrt(d*x^4 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^8 + 2*a*b*x^
4 + a^2)) + 4*((3*b*c - a*d)*x^4 - a*c)*sqrt(d*x^4 + c))/(a^2*c*x^6), 1/12*(3*b*c*x^6*sqrt((b*c - a*d)/a)*arct
an(1/2*((b*c - 2*a*d)*x^4 - a*c)*sqrt(d*x^4 + c)*sqrt((b*c - a*d)/a)/((b*c*d - a*d^2)*x^6 + (b*c^2 - a*c*d)*x^
2)) + 2*((3*b*c - a*d)*x^4 - a*c)*sqrt(d*x^4 + c))/(a^2*c*x^6)]

________________________________________________________________________________________

giac [B]  time = 1.75, size = 225, normalized size = 2.05 \begin {gather*} -\frac {{\left (b^{2} c \sqrt {d} - a b d^{\frac {3}{2}}\right )} \arctan \left (\frac {{\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{2 \, \sqrt {a b c d - a^{2} d^{2}} a^{2}} - \frac {3 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} b c \sqrt {d} - 3 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} a d^{\frac {3}{2}} - 6 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b c^{2} \sqrt {d} + 3 \, b c^{3} \sqrt {d} - a c^{2} d^{\frac {3}{2}}}{3 \, {\left ({\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} - c\right )}^{3} a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^4+c)^(1/2)/x^7/(b*x^4+a),x, algorithm="giac")

[Out]

-1/2*(b^2*c*sqrt(d) - a*b*d^(3/2))*arctan(1/2*((sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d
 - a^2*d^2))/(sqrt(a*b*c*d - a^2*d^2)*a^2) - 1/3*(3*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^4*b*c*sqrt(d) - 3*(sqrt(d)
*x^2 - sqrt(d*x^4 + c))^4*a*d^(3/2) - 6*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b*c^2*sqrt(d) + 3*b*c^3*sqrt(d) - a*
c^2*d^(3/2))/(((sqrt(d)*x^2 - sqrt(d*x^4 + c))^2 - c)^3*a^2)

________________________________________________________________________________________

maple [B]  time = 0.26, size = 1116, normalized size = 10.15 \begin {gather*} \frac {b d \ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}\, a}-\frac {b d \ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}\, a}-\frac {b^{2} c \ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}\, a^{2}}+\frac {b^{2} c \ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}\, a^{2}}-\frac {\sqrt {d \,x^{4}+c}\, b d \,x^{2}}{2 a^{2} c}-\frac {b \sqrt {d}\, \ln \left (\sqrt {d}\, x^{2}+\sqrt {d \,x^{4}+c}\right )}{2 a^{2}}+\frac {b \sqrt {d}\, \ln \left (\frac {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d -\frac {\sqrt {-a b}\, d}{b}}{\sqrt {d}}+\sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}\right )}{4 a^{2}}+\frac {b \sqrt {d}\, \ln \left (\frac {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d +\frac {\sqrt {-a b}\, d}{b}}{\sqrt {d}}+\sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}\right )}{4 a^{2}}-\frac {\sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}\, b^{2}}{4 \sqrt {-a b}\, a^{2}}+\frac {\sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}\, b^{2}}{4 \sqrt {-a b}\, a^{2}}+\frac {\left (d \,x^{4}+c \right )^{\frac {3}{2}} b}{2 a^{2} c \,x^{2}}-\frac {\left (d \,x^{4}+c \right )^{\frac {3}{2}}}{6 a c \,x^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^4+c)^(1/2)/x^7/(b*x^4+a),x)

[Out]

1/2/a^2*b/c/x^2*(d*x^4+c)^(3/2)-1/2/a^2*b/c*d*x^2*(d*x^4+c)^(1/2)-1/2/a^2*b*d^(1/2)*ln(d^(1/2)*x^2+(d*x^4+c)^(
1/2))-1/4/a^2*b^2/(-a*b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^
(1/2)+1/4/a^2*b*d^(1/2)*ln(((x^2+(-a*b)^(1/2)/b)*d-(-a*b)^(1/2)/b*d)/d^(1/2)+((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b
)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))-1/4/a*b/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(
1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x
^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))*d+1/4/a^2*b^2/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/
2)*ln((-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d
-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))*c+1/4/a^2*b^2/(-a*b)^(1/2)*
((x^2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)+1/4/a^2*b*d^(1/2)*ln(((x^
2-(-a*b)^(1/2)/b)*d+(-a*b)^(1/2)/b*d)/d^(1/2)+((x^2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*
d-(a*d-b*c)/b)^(1/2))+1/4/a*b/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-2*
(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)
/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))*d-1/4/a^2*b^2/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x^2-(-a*b
)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)
/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))*c-1/6/a/x^6*(d*x^4+c)^(3/2)/c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d x^{4} + c}}{{\left (b x^{4} + a\right )} x^{7}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^4+c)^(1/2)/x^7/(b*x^4+a),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^4 + c)/((b*x^4 + a)*x^7), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {d\,x^4+c}}{x^7\,\left (b\,x^4+a\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^4)^(1/2)/(x^7*(a + b*x^4)),x)

[Out]

int((c + d*x^4)^(1/2)/(x^7*(a + b*x^4)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + d x^{4}}}{x^{7} \left (a + b x^{4}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**4+c)**(1/2)/x**7/(b*x**4+a),x)

[Out]

Integral(sqrt(c + d*x**4)/(x**7*(a + b*x**4)), x)

________________________________________________________________________________________